Non‐Flammable Electrolyte with Lithium Nitrate as the Only Lithium Salt for Boosting Ultra‐Stable Cycling and Fire‐Safety Lithium Metal Batteries

Author:

Liao Can1,Han Longfei1,Wang Wei2,Li Wanqing1,Mu Xiaowei1,Kan Yongchun1ORCID,Zhu Jixin1,Gui Zhou1,He Xiangming3,Song Lei1,Hu Yuan1

Affiliation:

1. State Key Laboratory of Fire Science University of Science and Technology of China Hefei Anhui 230026 P. R. China

2. School of Mechanical & Manufacturing Engineering University of New South Wales Sydney 2052 Australia

3. Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 P. R. China

Abstract

AbstractLithium metal batteries (LMBs) attract considerable attention for their incomparable energy density. However, safety issues caused by uncontrollable lithium dendrites and highly flammable electrolyte limit large‐scale LMBs applications. Herein, a low‐cost, thermally stable, and low environmentally‐sensitive lithium nitrate (LiNO3) is proposed as the only lithium salt to incorporate with nonflammable triethyl phosphate and fluoroethylene carbonate (FEC) co‐solvent as the electrolyte anticipated to enhance the performance of LMBs. Benefiting from the presence of NO3 and FEC with strong solvation effect and easily reduced ability, a Li3N–LiF‐rich stable solid electrolyte interphase is constructed. Compared to commercial electrolytes, the proposed electrolyte has a high Coulombic efficiency of 98.31% in Li‐Cu test at 1 mA cm−2 of 1.0 mAh cm−2 with dendrite‐free morphology. Additionally, the electrolyte system shows high voltage stability and cathode electrolyte interphase film‐forming properties with stable cycling performances, which exhibit outstanding capacity retention rates of 96.39% and 83.74% after 1000 cycles for LFP//Li and NCM811//Li, respectively. Importantly, the non‐flammable electrolyte delays the onset of combustion in lithium metal soft pack batteries by 255 s and reduces the peak heat release by 21.02% under the continuous external high‐temperature heating condition. The novel electrolyte can contribute immensely to developing high‐electrochemical‐performance and high‐safety LMBs.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3