3D Carbon Allotropes: Topological Quantum Materials with Obstructed Atomic Insulating Phases, Multiple Bulk‐Boundary Correspondences, and Real Topology

Author:

Wang Jianhua12,Zhang Ting‐Ting3,Zhang Qianwen4,Cheng Xia4,Wang Wenhong1,Qian Shifeng5,Cheng Zhenxiang2ORCID,Zhang Gang6,Wang Xiaotian24

Affiliation:

1. School of Material Science and Engineering Tiangong University Tianjin 300387 China

2. Institute for Superconducting and Electronic Materials Faculty of Engineering and Information Sciences University of Wollongong Wollongong 2500 Australia

3. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

4. School of Physical Science and Technology Southwest University Chongqing 400715 China

5. Anhui Province Key Laboratory of Optoelectric Materials Science and Technology Department of Physics Anhui Normal University, Anhui Wuhu 241000 China

6. Institute of High‐Performance Computing Agency for Science Technology and Research Singapore 138632 Singapore

Abstract

AbstractThe study of topological phases with unconventional bulk‐boundary correspondences and nontrivial real Chern number has garnered significant attention in the topological states of matter. Using the first‐principle calculations and theoretical analysis, a high‐throughput material screening of the 3D obstructed atomic insulators (OAIs) and 3D real Chern insulators (RCIs) based on the Samara Carbon Allotrope Database (SACADA) are performed. Results show that 422 out of 703 3D carbon allotropes are 3D OAIs with multiple bulk‐boundary correspondences, including 2D obstructed surface states (OSSs) and 1D hinge states, which are in 1D and 2Ds lower than the 3D bulk, respectively. The 2D OSSs in these OAIs can be modified when subjected to appropriate boundaries, which benefits the investigation of surface engineering and the development of efficient topological catalysts. These 422 OAIs, which have 2D and 1D boundary states, are excellent platforms for multi‐dimensional topological boundaries research. Remarkably, 138 of 422 OAIs are also 3D RCIs, which show a nontrivial real topology in the protection of spacetime inversion symmetry. This work not only provides a comprehensive list of 3D carbon‐based OAIs and RCIs, but also guides their application in various aspects based on multiple bulk‐boundary correspondences and real topological phases.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3