Pd‐Embedded NiFe Layered Double Hydroxides for Biomass Upgrading: Precision Construction of Dual‐Functional Synergistic Sites

Author:

Liu Guihao1,Nie Tianqi1,Song Ziheng12,Sun Xiaoliang1,Shen Tianyang1,Bai Sha1,Yu Tianrui1,Zheng Lirong3,Song Yu‐Fei12ORCID

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China

2. Quzhou Institute for Innovation in Resource Chemical Engineering Quzhou Zhejiang 324000 P. R. China

3. Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractThe key challenge for 5‐hydroxymethylfurfural oxidation reaction (HMFOR) lies in understanding the synergistic interactions between active sites and adsorption sites, but the uncertain spatial positions of these two sites largely limit their synergistic effect. Here, an embedded Pd/NiFe layered double hydroxide (LDH) with Pd nanoparticles (NPs) (3.6 nm) far larger than the interlayer spacing of LDH is reported, which results in the in situ generation of the defective structures at the interface of the NiFe laminate. The Pd/NiFe shows a lower onset potential of 1.34 V compared to NiFe (1.42 V). Experimental and theoretical calculations reveal that the Pd NPs exhibit a high level of orbital overlap with HMF, leading to a strong adsorption tendency and an increased local concentration of HMF near the Pd NPs. The Ni defects generated around Pd NPs result in the 3d‐orbitals of adjacent Ni sites approaching the Fermi level, reducing the oxidation barrier from Ni2+‐OH to Ni3+‐O active sites. Furthermore, this work provides crucial evidence for the hydration interactions between the aldehyde groups in HMF and the hydroxyl groups on the catalyst surface, demonstrating that the removal ability of the latter one can have an important influence on HMFOR activity.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3