Ultralow Lattice Thermal Conductivity and Extraordinary Thermoelectric Performance in Highly Disordered CuIn7Se11 Layered Compound

Author:

Yang Zhen12,Zi Peng12,Liu Keke12,Luo Hao2,Bai Hui12,Chen Shuo12,Wu Jinsong23,Su Xianli12ORCID,Uher Ctirad4,Zhang Qingjie2,Tang Xinfeng12ORCID

Affiliation:

1. Hubei Longzhong Laboratory Wuhan University of Technology Xiangyang Demonstration Zone Xiangyang 441000 China

2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China

3. Nanostructure Research Center Wuhan University of Technology Wuhan 430070 China

4. Department of Physics University of Michigan Ann Arbor MI 48109 USA

Abstract

AbstractSince the lattice thermal conductivity of thermoelectric materials is a relatively independent parameter, exploring semiconductor materials with intrinsically low lattice thermal conductivity is an important direction in the field of thermoelectric research. Herein, a high figure of merit ZT of 1.23 at 873 K and an exceptionally low lattice thermal conductivity of 0.18 W m−1 K−1 are realized in the n‐type CuIn7Se11 compound for the first time. The weak In─Se chemical bonds induce strong coupling between acoustic phonon and optical phonon with low frequency, leading to low sound velocity. The highly disordered configuration of Cu, In, and vacancies at In2, In3, and M sites, in conjunction with atomic‐scale slips and flips intensify phonon scattering. All these result in an intrinsically low thermal conductivity of the CuIn7Se11 compound. DFT calculation reveals that the density of states at the bottom of the conduction band is mainly contributed by the coupling between 4p orbitals of Se atoms and 5s orbitals of In atoms, featuring with a small effective mass. This small effective mass of charge carrier renders the CuIn7Se11 compound high carrier mobility of 435 cm2 V−1 s−1 at 300 K. Consequently, the CuIn7Se11 compound possesses an extraordinary thermoelectric performance

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3