Electronic Transport and Interaction of Lattice Dynamics in Topological Nodalline Semimetal HfAs2 Single Crystals

Author:

Muhammad Zahir1ORCID,Hussain Ghulam2,Islam Rajbul3,Zawadzka Natalia4,Hossain Md Shafayat5,Iqbal Obaid6,Babiński Adam4,Molas Maciej R.4,Xue Fei3,Zhang Yue1,Hasan M. Zahid5,Zhao Weisheng1

Affiliation:

1. Hefei Innovation Research Institute School of Integrated Circuit Science and Engineering Beihang University Hefei Anhui 230012 P. R. China

2. Institute for Advanced Study Shenzhen University Shenzhen 518060 P. R. China

3. Department of Physics University of Alabama at Birmingham Birmingham AL 35294 USA

4. Institute of Experimental Physics Faculty of Physics University of Warsaw Pasteura 5 Warsaw 02‐093 Poland

5. Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7) Department of Physics Princeton University Princeton 08540 NJ USA

6. Institute of Solid‐State Physics Chinese Academy of Sciences Hefei Anhui 230031 P. R. China

Abstract

AbstractTopological semimetals represent a novel class of quantum materials displaying non‐trivial topological states that host Dirac/Weyl fermions. The intersection of Dirac/Weyl points gives rise to essential properties in a wide range of innovative transport phenomena, including extreme magnetoresistance, high mobilities, weak antilocalization, electron hydrodynamics, and various electro‐optical phenomena. In this study, the electronic, transport, phonon scattering, and interrelationships are explored in single crystals of the topological semimetal HfAs2. It reveals a weak antilocalization effect at low temperatures with high carrier density, which is attributed to perfectly compensated topological bulk and surface states. The angle‐resolved photoemission spectroscopy (ARPES) results show anisotropic Fermi surfaces and surface states indicative of the topological semimetal, further confirmed by first‐principle density functional theory (DFT) calculations. Moreover, the lattice dynamics in HfAs2 are investigated both with the Raman scattering and density functional theory. The phonon dispersion, density of states, lattice thermal conductivity, and the phonon lifetimes are computed to support the experimental findings. The softening of phonons, the broadening of Raman modes, and the reduction of phonon lifetimes with temperature suggest the enhancement of phonon anharmonicity in this new topological material, which is crucial for boosting the thermoelectric performance of topological semimetals.

Funder

Narodowym Centrum Nauki

Narodowe Centrum Nauki

National Science Foundation

National Natural Science Foundation of China

Gordon and Betty Moore Foundation

Princeton University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3