Microfluidic Platforms to Screen Granular Hydrogel Microenvironments for Tissue Regeneration

Author:

Krattiger Lisa A.12ORCID,Emiroglu Dilara Börte23ORCID,Pravato Silvia1,Moser Lukas O.1ORCID,Bachmann Olivia A.12,La Cioppa Simona Y.12,Rivera Gabriel J. Rodriguez4ORCID,Burdick Jason A.4ORCID,deMello Andrew J.3ORCID,Tibbitt Mark W.2ORCID,Ehrbar Martin1ORCID

Affiliation:

1. Department of Obstetrics University Hospital Zurich University of Zurich Schmelzbergstrasse 12 Zurich 8091 Switzerland

2. Macromolecular Engineering Laboratory Department of Mechanical and Process Engineering ETH Zurich, Sonneggstrasse 3 Zurich 8092 Switzerland

3. deMello Laboratory Department of Chemical and Bioengineering ETH Zurich Vladimir‐Prelog‐Weg, 1–5/10 Zurich 8093 Switzerland

4. Burdick Laboratory BioFrontiers Institute and Department of Chemical and Biological Engineering University of Colorado Boulder 596 UCB Boulder CO 80309 USA

Abstract

AbstractGranular hydrogels have emerged as a promising class of biomaterials in medical research, enabling independent control of matrix stiffness within a porous biomaterial. Such microgel packings comprise interconnected pores and high surface‐to‐volume ratios. These features facilitate cell viability and nutrient diffusion, which are critical in enabling tissue regeneration. Despite the current interest in granular hydrogels for tissue engineering applications, only a few in vitro platforms are used to investigate cell interactions, limiting their design, and translation. In this study, microfluidic platforms able to reproducibly confine and immobilize microgels without the need for secondary cross‐linking are developed. Protocols are established for the generation of human bone marrow‐derived mesenchymal stem/stromal cells (hBM‐MSC)‐infiltrated microporous substrates and early‐time responses of cells to their environment are studied. Further, a tissue invasion assay is established, where cells infiltrate granular materials at different rates depending on growth factor presence or material properties. This platform is compatible with a range of different granular materials, and it is envisioned to have significant utility as a pre‐clinical tool for the rational design of materials for tissue healing applications.

Funder

Eidgenössische Technische Hochschule Zürich

Helmut Horten Stiftung

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3