Affiliation:
1. International Innovation Center for Forest Chemicals and Materials and Jiangsu Co‐Innovation Center for Efficient Processing and Utilization of Forest Resources Nanjing Forestry University Nanjing 210037 China
2. Department of Chemical Engineering University of New Brunswick Fredericton NB E3B 5A3 Canada
3. Macromolecular Chemistry and Bavarian Polymer Institute University of Bayreuth 95440 Bayreuth Germany
4. College of Textile and Fashion Hunan Institute of Engineering Xiangtan Hunan 411104 China
Abstract
AbstractCurrently, multifunctional MXene‐integrated wearable textiles (MWTs) are particularly appealing due to their various applications such as health monitoring, smart protection, and medical treatment. However, scalable manufacture of durable, stable, and high‐performance multifunctional MWTs still face challenges due to the poor oxidation stability of MXene and low utilization of precursor titanium aluminum carbide (MAX). Herein, an improved preparation strategy for zinc ion (Zn2+) intercalation is proposed to create high antioxidative MXene (ZM) and exceptionally conductive and printable gel ink based on MXene sediments (ZMS‐ink), while multifunctional wearable textiles are fabricated using spray‐coating and screen‐printing techniques on cellulosic nonwoven textiles (CNWs), achieving the complete utilization of MXene precursor. Benefiting from the inherent disordered stacking and porous structure of CNWs, along with the highly conductive ZM and ZMS‐ink, as‐prepared smart, wearable and green‐based pressure sensor offered proper breathability, high sensitivity (2602.26 kPa−1), wide sensing range (0–141 kPa), and excellent cycling stability (>5000 cycles). Additionally, the sensor exhibited efficient photothermal/photodynamic therapy antibacterial activity and exceptional electromagnetic interference shielding performance (57.5 dB). Therefore, this work paves the way for the future development of integrated and scalable multifunctional wearable devices building on the environmental‐friendly CNWs incorporated with fully utilized MAX, offering a green and cost‐effective approach.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
China Scholarship Council
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献