“One Stone Five Birds” Plasma Activation Strategy Synergistic with Ru Single Atoms Doping Boosting the Hydrogen Evolution Performance of Metal Hydroxide

Author:

Yan Ping1,Yang Tao2,Lin Minxi2,Guo Yanan2,Qi Zipeng1,Luo Qiquan2,Yu Xin‐Yao1ORCID

Affiliation:

1. School of Materials Science and Engineering Institute of Energy Hefei Comprehensive National Science Center (Anhui Energy Laboratory) Anhui University Hefei 230601 P. R. China

2. Institutes of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China

Abstract

AbstractLayered metal hydroxides (LMHs) are promising catalysts for oxygen evolution reaction. However, the hydrogen evolution reaction (HER) activity of LMHs is unsatisfactory due to their poor conductivity and limited active sites. Herein, taking Ni(OH)2 as demonstration, a novel “one stone five birds” plasma activation strategy synergistic with Ru single atoms (Ru SAs) doping is developed to boost the HER activity of Ni(OH)2 by constructing heterostructured β‐Ni(OH)2/Ni‐Ru SAs nanosheet arrays (NSAs). Benefiting from the structural/compositional features and optimized electronic state, the as‐obtained β‐Ni(OH)2/Ni‐Ru SAs NSAs exhibit splendid HER activity with a low overpotential of 16 mV at 10 mA cm−2 and a small Tafel slope of 21 mV dec−1 in alkaline solution. Excellent HER performance in alkaline seawater and neutral solutions are also demonstrated by the β‐Ni(OH)2/Ni‐Ru SAs NSAs. The plasma activation and Ru SAs doping play important roles in enhancing water adsorption and accelerating the kinetics of water dissociation. Density functional theory (DFT) calculations reveal that the introduction of Ru SAs in the system facilitates the generation of surface OH vacancies for providing more active sites as well as decreases the antibonding state density of the generated mid‐gap state for enhancing H adsorption strength toward the optimal range.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3