Ultrahigh Energy Density of Antiferroelectric PbZrO3‐Based Films at Low Electric Field

Author:

Li Dongxu1ORCID,Meng Xiangyu1,Zhou Enhao1,Chen Xiaoxiao1,Shen Zhonghui1,Guo Qinghu2,Yao Zhonghua1,Cao Minghe1,Wu Jinsong1,Zhang Shujun3ORCID,Liu Hanxing1,Hao Hua12ORCID

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing School of Material Science and Engineering International School of Material Science and Engineering Wuhan University of Technology Wuhan 430070 P. R. China

2. Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory Xianhu hydrogen Valley Foshan 528200 P. R. China

3. Institute for Superconducting and Electronic Materials Australian Institute of Innovative Materials University of Wollongong Wollongong NSW 2500 Australia

Abstract

AbstractDielectric capacitors play a vital role in advanced electronics and power systems as a medium of energy storage and conversion. Achieving ultrahigh energy density at low electric field/voltage, however, remains a challenge for insulating dielectric materials. Taking advantage of the phase transition in antiferroelectric (AFE) film PbZrO3(PZO), a small amount of isovalent (Sr2+) / aliovalent (La3+) dopants are introduced to form a hierarchical domain structure to increase the polarization and enhance the backward switching fieldEAsimultaneously, while maintaining a stable forward switching fieldEF. An ultrahigh energy density of 50 J cm−3is achieved for the nominal Pb0.925La0.05ZrO3(PLZ5) films at low electric fields of 1 MV cm−1, exceeding the current dielectric energy storage films at similar electric field. This study opens a new avenue to enhance energy density of AFE materials at low field/voltage based on a gradient‐relaxor AFE strategy, which has significant implications for the development of new dielectric materials that can operate at low field/voltage while still delivering high energy density.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3