Coupling Adsorbed Evolution and Lattice Oxygen Mechanism in Fe‐Co(OH)2/Fe2O3 Heterostructure for Enhanced Electrochemical Water Oxidation

Author:

Xin Sisi1,Tang Yu2,Jia Baohua3,Zhang Zhengfu1,Li Chengping1,Bao Rui1,Li Caiju1,Yi Jianhong1,Wang Jinsong14ORCID,Ma Tianyi3ORCID

Affiliation:

1. Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China

2. Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology Yunnan Normal University Kunming 650500 P. R. China

3. School of Science STEM College RMIT University Victoria 3122 Australia

4. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 P. R. China

Abstract

AbstractOxygen evolution reaction (OER) remains a bottleneck for electrocatalytic water‐splitting to generate hydrogen. However, the traditional adsorbed evolution mechanism (AEM) possesses sluggish reaction kinetics due to the scaling relationship, while lattice oxygen mechanism (LOM) triggers an unstable structure due to the escaping of lattice oxygen. Herein, a proof‐of‐concept Fe‐Co(OH)2/Fe2O3 heterostructure is put forward, where Fe‐Co(OH)2 following AEM can complete rapidly deprotonation process while Fe2O3 following LOM can trigger O─O coupling step. Combining the theoretical and experimental investigation confirmed that the redistributed space‐charge of Fe‐Co(OH)2/Fe2O3 junction can optimize synergistically adsorbed and lattice oxygen, the coupling mechanism of AEM and LOM can facilitate synchronously the OER activity and stability. As a result, the Fe‐Co(OH)2/Fe2O3 heterostructure shows excellent OER performance with low overpotential of only 219 and 249 mV to reach a current density of 10 and 100 mA cm−2. Specifically, the Fe‐Co(OH)2/Fe2O3 electrocatalyst maintains excellent long‐term stability for 100 h at a large current density of 100 mA cm−2. This work paves an avenue to break through the limit of the conventional OER mechanism.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3