Integrated Dual‐Phase Ion Transport Design Within Electrode for Fast‐Charging Lithium‐Ion Batteries

Author:

Tu Shuibin12,Zhang Yan1,Ren Dongsheng3,Chen Zihe1,Wang Wenyu1,Zhan Renming1,Wang Xiancheng1,Cheng Kai12,Ou Yangtao1,Duan Xiangrui1,Wang Li3,Sun Yongming1ORCID

Affiliation:

1. Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China

2. Department of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China

3. Institute of Nuclear & New Energy Technology Tsinghua University Beijing 100084 China

Abstract

AbstractThe development of fast‐charging lithium‐ion batteries with high energy density is hindered by the sluggish Li+ transport and substantial polarization within graphite electrodes. Herein, this study proposes that the integrated design of liquid electrolyte and solid electrolyte, a dual‐phase electrolyte (DP‐electrolyte), can facilitate Li+ transport within a thick electrode. A 3D Li3PS4 (LPS) network is constructed within the graphite electrode to form the LPS/graphite electrode. This is achieved through the in situ conversion of the P4S16 into the LPS, a process introduced during the slurry processing. Both experimental findings and simulation outcomes indicate that this design mitigates the concentration polarization due to the improved Li+ transport capability with an overall high Li+ transference number within the electrode. With a high capacity of ≈3.1 mAh cm−2 attributed to the graphite electrode, the LiNi0.6Co0.2Mn0.2O2 (NCM622)||LPS/graphite cells demonstrate superior fast‐charging capability (4 C, 15 min, charging to ≈87.7%) and stable cycling performance (4 C, 700 cycles, ≈80% capacity retention). Furthermore, they exhibit commendable low‐temperature performance. The Ah‐level pouch cell achieves 87.5% recharge in 15 min with an energy density of ≈221.5 Wh kg−1. This work offers an alternative avenue for the advancement of fast‐charging lithium‐ion batteries with practical high energy density.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3