In Situ Construction of Ni/Ni0.2Mo0.8N Heterostructure to Enhance the Alkaline Hydrogen Oxidation Reaction by Balancing the Binding of Intermediates

Author:

Huang Churong1,Feng Min1,Peng Yang1,Zhang Bin1,Huang Jingle1,Yue Xin1ORCID,Huang Shaoming1ORCID

Affiliation:

1. Guangzhou Key Laboratory of Low‐Dimensional Materials and Energy Storage Devices Collaborative Innovation Center of Advanced Energy Materials School of Materials and Energy Guangdong University of Technology Guangzhou 510006 P. R. China

Abstract

AbstractThe inferior activity of hydrogen oxidation reaction (HOR) in alkali severely hampers the deployment of Ni catalysts in the promising anion exchange membrane fuel cells (AEMFCs), due to the unbalanced binding energies of hydrogen (HBE) and hydroxyl (OHBE) species. Ni‐Mo alloy and nickel nitride have been proven to improve the Ni‐based activities of HOR but they still can be further enhanced. Because it sacrifices the HBE for enlarging OHBE. Herein, it is reported that the activity can be further improved by constructing heterostructure between Ni nanoparticles (NPs) and nitride of Ni‐Mo alloy (Ni0.2Mo0.8N) by an in situ synthetic strategy. The in situ prepared reduced graphene oxide (rGO) supported heterostructure (Ni/Ni0.2Mo0.8N/rGO) possesses the state‐of‐the‐art activity (overpotential of 100 mV to achieve 2.9 mA cm−2), faster kinetics (kinetics current density of 11.20 mA cm−2 and exchange current density of 2.74 mA cm−2), and ultrahigh durability (maintaining the current densities for over 40 h or 10000 cycles). Detailed characterizations together with density functional theory simulations reveal that the tuned d‐band electronic structures optimize and balance the HBE and OHBE, facilitating the HOR process on the as‐fabricated heterostructured catalyst.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3