Thermally Robust Aramid Triboelectric Materials Enabled by Heat‐Induced Cross‐Linking

Author:

Wang Zhiwei1,Wu Di1,Chi Mingchao1,Zou Xuelian1,Wang Jinlong1,Zhao Tong1,Zhang Huiya1,Zhu Yunpeng1,Jiang Keyang1,Meng Fanzhen1,Wang Shuangfei1,Nie Shuangxi1ORCID

Affiliation:

1. Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control School of Light Industry and Food Engineering Guangxi University Nanning 530004 P. R. China

Abstract

AbstractThe rapid development of the Internet of Things has led to numerous functional electronic devices, making it a significant challenge to provide power for these distributed devices. Triboelectric self‐power technology is ideal for smart devices due to its material diversity and high energy efficiency. However, traditional triboelectric materials have weak electrostatic induction due to their low dielectric constant. Additionally, the thermionic emission effect reduces their electric output in high temperatures, limiting their applications. This study designes a thermally robust aramid triboelectric material with a high dielectric constant through heat‐induced cross‐linking heterogeneous interface engineering. This novel material not only achieves high triboelectric output but also maintains high performance across a wide temperature range. The heat‐induced cross‐linking process enhances the interaction between aramid nanofibers and Al2O3 nanosheets, significantly improving the electrical performance, and flame retardance of the material, and the relative dielectric constant increases 16‐fold. The triboelectric nanogenerator constructed with this material achieves a power density of 3.97 W m−2, and maintains high triboelectric output at 260 °C. Finally, a self‐powered detection system collects high‐temperature gas energy and drives sensors is designed. This research presents a novel strategy for high‐performance triboelectric materials, showing significant potential for self‐powered devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3