Ultrafast Charging of a 4.8 V Manganese‐Rich Cathode‐Based Lithium Metal Cell by Constructing Robust Solid Electrolyte Interphases

Author:

An Kihun1,Joo Myeong Jun2,Tran Yen Hai Thi1,Kwak Sehyun1,Kim Hyung Gi2,Jin Chang Soo3,Suk Jungdon4,Kang Yongku4,Park Yong Joon2,Song Seung‐Wan1ORCID

Affiliation:

1. Department of Chemical Engineering & Applied Chemistry Chungnam National University Daejeon 34134 Republic of Korea

2. Department of Advanced Materials Engineering Kyonggi University Suwon 16227 Republic of Korea

3. ESS Laboratory Korea Institute of Energy Research Daejeon 34129 Republic of Korea

4. Advanced Materials Division Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea

Abstract

AbstractFast charging of Li‐metal battery (LMB) is a challenging issue owing to the interfacial instability of Li‐metal anode in liquid electrolyte and Li‐dendrites growth, resulting in fire hazard. Those issues motivated to pioneer a stabilization strategy of liquid electrolyte‐derived solid electrolyte interphase (SEI) layer that enables dendrites‐free Li‐metal anode under extremely high current density, which solid‐state battery cannot. Here, the novel electrolyte formulation is reported including trace‐level pentafluoropropionic anhydride (PFPA) combined with fluoroethylene carbonate (FEC) additives, and the SEI stabilization in Li//Mn‐rich LMB, achieving unprecedented ultrafast charging under simultaneous extreme conditions of 20 C (charged in 3 min), 4.8 V and 45 °C, delivering 118 mAh g−1 for long reversible 400 cycles, and unprecedented high stability of Li//Li cell under extremely high current 10 mA cm−2 (Li stripping/plating in 6 min) for a prolonged time of 200 h. The SEI analysis results reveal that the PFPA, which has a symmetric 10 F‐containing molecular structure, is a strong F source for promptly producing thin, uniform, and robust F‐ and organics‐enriched SEI layers at both Li‐metal anode and Mn‐rich cathode, preventing Li‐dendrites. This study provides a potential concept for ultrafast charging, long‐cycled, and safer high‐energy LMBs and LIBs.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3