Affiliation:
1. Department of Chemical Engineering & Applied Chemistry Chungnam National University Daejeon 34134 Republic of Korea
2. Department of Advanced Materials Engineering Kyonggi University Suwon 16227 Republic of Korea
3. ESS Laboratory Korea Institute of Energy Research Daejeon 34129 Republic of Korea
4. Advanced Materials Division Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
Abstract
AbstractFast charging of Li‐metal battery (LMB) is a challenging issue owing to the interfacial instability of Li‐metal anode in liquid electrolyte and Li‐dendrites growth, resulting in fire hazard. Those issues motivated to pioneer a stabilization strategy of liquid electrolyte‐derived solid electrolyte interphase (SEI) layer that enables dendrites‐free Li‐metal anode under extremely high current density, which solid‐state battery cannot. Here, the novel electrolyte formulation is reported including trace‐level pentafluoropropionic anhydride (PFPA) combined with fluoroethylene carbonate (FEC) additives, and the SEI stabilization in Li//Mn‐rich LMB, achieving unprecedented ultrafast charging under simultaneous extreme conditions of 20 C (charged in 3 min), 4.8 V and 45 °C, delivering 118 mAh g−1 for long reversible 400 cycles, and unprecedented high stability of Li//Li cell under extremely high current 10 mA cm−2 (Li stripping/plating in 6 min) for a prolonged time of 200 h. The SEI analysis results reveal that the PFPA, which has a symmetric 10 F‐containing molecular structure, is a strong F source for promptly producing thin, uniform, and robust F‐ and organics‐enriched SEI layers at both Li‐metal anode and Mn‐rich cathode, preventing Li‐dendrites. This study provides a potential concept for ultrafast charging, long‐cycled, and safer high‐energy LMBs and LIBs.
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献