In Operando Optical Tracking of Oxygen Vacancy Migration and Phase Change in few Nanometers Ferroelectric HZO Memories

Author:

Jan Atif1,Rembert Thomas1,Taper Sunil1,Symonowicz Joanna1,Strkalj Nives1ORCID,Moon Taehwan2,Lee Yun Seong3,Bae Hagyoul4,Lee Hyun Jae3,Choe Duk‐Hyun3,Heo Jinseong3,MacManus‐Driscoll Judith1,Monserrat Bartomeu1,Di Martino Giuliana1ORCID

Affiliation:

1. Department of Materials Science and Metallurgy University of Cambridge Cambridge CB3 0FS UK

2. Department of Electrical and Computer Engineering University of Southern California Los Angeles 90089 USA

3. Samsung Advanced Institute of Technology Suwon‐si 16678 South Korea

4. Department of Electronics Engineering Jeonbuk National University Jeonju‐si 54896 South Korea

Abstract

AbstractFerroelectric materials offer a low‐energy, high‐speed alternative to conventional logic and memory circuitry. Hafnia‐based films have achieved single‐digit nm ferroelectricity, enabling further device miniaturization. However, they can exhibit nonideal behavior, specifically wake‐up and fatigue effects, leading to unpredictable performance variation over consecutive electronic switching cycles, preventing large‐scale commercialization. The origins are still under debate. Using plasmon‐enhanced spectroscopy, a non‐destructive technique sensitive to <1% oxygen vacancy variation, phase changes, and single switching cycle resolution, the first real‐time in operando nanoscale direct tracking of oxygen vacancy migration in 5 nm hafnium zirconium oxide during a pre‐wake‐up stage is provided. It is shown that the pre‐wake‐up leads to a structural phase change from monoclinic to orthorhombic phase, which further determines the device wake‐up. Further migration of oxygen ions in the phase changed material is then observed, producing device fatigue. These results provide a comprehensive explanation for the wake‐up and fatigue with Raman, photoluminescence and darkfield spectroscopy, combined with density functional theory and finite‐difference time‐domain simulations.

Funder

Engineering and Physical Sciences Research Council

Samsung Advanced Institute of Technology

Royal Academy of Engineering

Cambridge Trust

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3