Multimodal 5‐DOF Stretchable Electromagnetic Actuators toward Haptic Information Delivery

Author:

Chen Si1ORCID,Yu Li2ORCID,Shen Weijun2ORCID,Fong Brian3,Li Yizong1ORCID,Dong Penghao1ORCID,Qin Hantang2ORCID,Yao Shanshan1ORCID

Affiliation:

1. Department of Mechanical Engineering Stony Brook University Stony Brook NY 11794 USA

2. Industrial and Systems Engineering University of Wisconsin – Madison Madison WI 53706 USA

3. Department of Electrical and Computer Engineering Stony Brook University Stony Brook NY 11794 USA

Abstract

AbstractThe rapid advancements in artificial intelligence, particularly in the domains of robotics, prosthetics, and virtual and augmented reality (VR/AR), have driven an escalating demand for intuitive and effective human–machine interactions. Consequently, haptic devices, being electronic displays for the sense of touch, have drawn increasing attention. More efforts are in demand to develop stretchable and lightweight haptic devices that can trigger multiple mechanical cutaneous receptors using a single device. This work presents a new 3‐modal 5‐DOF stretchable haptic interface that is enabled by electromagnetic actuators and high‐fidelity multi‐layer metal printing. The haptic device renders rich haptic sensations (i.e., normal force, vibration, angular force, skin dragging) in one device, allowing for the comprehensive delivery of tactile information through the excitation of multiple cutaneous receptors. Additionally, haptic devices are designed to be compact, lightweight, and skin‐compatible. The skin‐like softness and stretchability enable intimate skin contact, which is crucial for efficient haptic information delivery. This feature prevents the impediment to natural movements of the skin and ensures the functional integrity of the device during daily deformations of the skin. Finally, three proof‐of‐concept demonstrations illustrate the potential of the reported multimodal haptic devices for advanced haptic interactions across various domains.

Funder

National Science Foundation

Stony Brook University

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3