Two‐Photon Laser Printing to Mechanically Stimulate Multicellular Systems in 3D

Author:

Colombo Federico1ORCID,Taale Mohammadreza1ORCID,Taheri Fereydoon1ORCID,Villiou Maria1ORCID,Debatin Teresa1,Dulatahu Gent1,Kollenz Philipp1ORCID,Schmidt Målin1ORCID,Schlagheck Christina23ORCID,Wittbrodt Joachim2ORCID,Selhuber‐Unkel Christine1ORCID

Affiliation:

1. Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM) Ruprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany

2. Centre for Organismal Studies Heidelberg Ruprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 230 69120 Heidelberg Germany

3. Heidelberg International Biosciences Graduate School HBIGS and HeiKa Graduate School on “Functional Materials” 69120 Heidelberg Germany

Abstract

AbstractBiological activities take place in 3D environments, where cells interact in various directions in a defined, often microstructured, space. A sub‐millimeter‐sized stretching device is developed to mechanically stimulate a structurally restricted, soft multicellular microenvironment to investigate the effect of defined cyclic mechanical forces on a multicellular system. It consists of a multi‐material 3D microstructure made of Polydimethylsiloxane (PDMS) and gelatine‐based hydrogel, which is printed using the 2‐photon polymerization (2PP) method. The printed structures are first characterized microscopically and mechanically to study the effect of different printing parameters. Using 2PP, organotypic cell cultures are then directly printed into the hydrogel structures to create true 3D cell culture systems. These systems are mechanically stimulated with a cantilever by indenting at defined positions. The cells in the 3D organotypic cell culture change morphology and actin orientation when exposed to cyclic mechanical stretch, even within short timescales of 30 min. As proof of concept, a Medaka retinal organoid is encapsulated in the same structure to demonstrate that even preformed organoids can be stimulated by this method. The results highlight the capability of 2PP for manufacturing multifunctional soft devices to mechanically control multicellular systems at micrometer resolution and thus mimic mechanical stresses as they occur in vivo.

Funder

H2020 European Research Council

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3