Affiliation:
1. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
2. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Materials Science Zhejiang Normal University Jinhua 321004 China
Abstract
AbstractThe properties of graphite surface can not only affect the interaction between graphite and electrolyte but also induce the formation of solid electrolyte interphase (SEI) film. Herein, the graphite surface is purposely treated to incorporate oxygen‐containing functional groups, which facilitates a desired Li2CO3‐rich SEI with high ionic conductivity and good mechanical stability. The modified graphite electrodes exhibit significant enhancement in electrochemical performance during rapid charging at the rate of 15 C, where an impressive capacity of 225 mAh g−1 is still maintained, corresponding to a capacity retention of 60.8%. Moreover, the modified electrodes showcase outstanding performance under wide temperature ranging from −50 to +65 °C, with an amazing capacity retention of 97.6% under −20 °C, the conceivable capacity of 105 mAh g−1 at −50 °C as well as excellent stability at both −20 °C and +65 °C. These findings offer valuable insights into the design of a thin and robust Li2CO3‐rich SEI layer via a facile chemical treatment of the graphite surface.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Natural Science Foundation of Shanghai Municipality
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献