An All‐Stretchable, Ultraviolet Protective, and Electromagnetic‐Interference‐Free E‐Textile

Author:

Dong Jiancheng1ORCID,Peng Yidong1,Long Jiayan1,Zhang Yuxi1,Wang Zicheng1,Park Steve2ORCID,Huang Yunpeng1ORCID,Liu Tianxi1ORCID

Affiliation:

1. Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China

2. Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

Abstract

AbstractFlexible and skin‐mountable electronics have drawn tremendous research attention with the booming of smart medical systems and wearing technologies, however, their environmental adaptability to electromagnetic and solar radiation has long been neglected. Herein, a novel health monitoring e‐textile with robust ultraviolet (UV) protecting and strong electromagnetic interference (EMI) shielding performance is rationally developed on an ultraelastic and bilayered nonwoven textile. Via the respective incorporation of silver flake‐modified liquid metal (AgLM) and silver nanoparticles (AgNPs) on each side of a permeable substrate, a Janus sensing layer with electrophysiological monitoring function, Joule heating ability, and excellent EMI shielding capability (up to 38.5 dB in X band) is first fabricated. Elastic microfibers embedded with sensitive photochromic microcapsules are then in situ assembled on the bioelectric‐sensing layer, achieving a bilayered e‐textile with a reversible UV‐chromic property and an extraordinary UV protection factor (UPF) of 335.56. The developed all‐stretchable and UV‐EMI proof e‐textile is utilized as a safe and comfortable on‐skin electronic to provide point‐of‐care health regulation under complex UV/EMI radiative environments. Specifically, stable Joule heating performance and accurate monitoring of electrocardiogram (ECG) and surface electromyography (sEMG) are simultaneously obtained, demonstrating promising applications in multifunctional and robust wearing electronics.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3