Affiliation:
1. Institute of Pharmaceutical Sciences Department of Chemistry and Applied Biosciences ETH Zurich Vladimir‐Prelog‐Weg 3 Zurich 8093 Switzerland
Abstract
AbstractThree‐dimensional (3D) printing via vat photopolymerization is transforming the manufacturing paradigms of biomedical devices, offering tremendous advantages for the production of customized advanced drug delivery systems. However, the existing commercial inks often lack the ability to simultaneously provide elasticity, strength, and biodegradability. Herein, photopolymerizable inks based on poly(β‐aminoester) diacrylates and N‐vinyl pyrrolidone are used to address these limitations. These biodegradable polymers enable the digital light processing 3D printing of elastomers with adjustable elongation at break (103–762%), stress at failure (0.2–8.3 MPa), and hydrolysis rates ranging from 25 min to 80 days. The authors are able to synthesize a soft polymer that possess properties akin to natural latex, which can enhance its elastic modulus when subjected to high strains. It can withstand 762% stretch with a maximum strength of 8.3 MPa. In addition, this polymer demonstrates cytocompatibility and unique biodegradation properties under simulated gastrointestinal conditions (within hours at pH 6.8). By utilizing this elastomer, a prototype of an expandable oral drug delivery device that has the ability to degrade within the average transit time in the jejunum is manufactured. This study paves the way to leverage vat photopolymerization 3D printing in the creation of complex prototypes of biomedical devices where strength, elasticity and biodegradability are essential.
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献