Enhanced Magnetization in CoFe2O4 Through Hydrogen Doping

Author:

Li Zhuolu1,Lyu Yingjie1ORCID,Ran Zhao2,Wang Yujia1,Zhang Yang1,Lu Nianpeng3,Wang Meng1,Sassi Michel4,Ha Thai Duy5,T. N'Diaye Alpha6,Shafer Padraic6,Pearce Carolyn4,Rosso Kevin4,Arenholz Elke6,Juang Jenh‐Yih5,He Qing7,Chu Ying‐Hao58,Luo Weidong29,Yu Pu110ORCID

Affiliation:

1. State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics Tsinghua University Beijing 100084 China

2. Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education) School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 China

3. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

4. Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Washington 99354 USA

5. Department of Electrophysics National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan

6. Advanced Light Source Lawrence Berkeley National Laboratory Berkeley California 94720 USA

7. Department of Physics Durham University Durham DH1 3LE UK

8. Department of Materials Science & Engineering National Tsing Hua University Hsinchu 30013 Taiwan

9. Institute of Natural Sciences Shanghai Jiao Tong University Shanghai 200240 China

10. Collaborative Innovation Center of Quantum Matter Beijing 100084 China

Abstract

AbstractMagnetic spinel oxides have attracted extensive research interest due to their rich physics and wide range of applications. However, these materials invariably suffer suppressed magnetization, due to structural imperfections (e.g., disorder, anti‐site defects, etc.). Herein, a dramatic enhanced magnetization is obtained with an increasement of 5 µB/u.c in CoFe2O4 (CFO) through ionic liquid gating induced hydrogen doping. The intercalated hydrogen ions lead to both distinct lattice expansion of ≈0.7% and notable Fe valence state reduction through electron doping, in which ≈17% Fe3+ is reduced into Fe2+. These facts collectively trigger a site‐specific spin‐flip on tetrahedrally coordinated Co2+ sites that enhances the net ferrimagnetic moment nearly to its theoretical maximum for perfect CFO.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3