Functional Liquid Metal Polymeric Composites: Fundamentals and Applications in Soft Wearable Electronics

Author:

Liang Fang‐Cheng12ORCID,Tee Benjamin C. K.1345ORCID

Affiliation:

1. Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117575 Singapore

2. Institute of Organic and Polymeric Materials Research and Development Center of Smart Textile Technology National Taipei University of Technology Taipei 10608 Taiwan

3. Department of Electrical & Computer Engineering National University of Singapore 4 Engineering Drive 3 Singapore 117583 Singapore

4. Institute for Health Innovation & Technology (iHealthTech) National University of Singapore 14 Medical Drive Singapore 117599 Singapore

5. The N.1 Institute for Health National University of Singapore 28 Medical Drive Singapore 117456 Singapore

Abstract

AbstractWearable and self‐healing soft electronics have led to a significant emphasis on their potential in creating versatile, conformable, and sustainable electronic modules. Among conductive additives, Liquid metals (LMs), combining both solid and liquid characteristics, have gained widespread attention due to their versatile physical, chemical, and electrical properties as well as self‐healing capability, biocompatibility, and recyclability. The fluidity of LMs facilitates adaptability to various experimental conditions and components for specific applications. Moreover, the oxide shell on LMs exhibits strong compatibility with surface functionalization and polymerization processes, enhancing the development of reliable composite materials. Herein, an in‐depth analysis of the fundamental properties and characteristics of LMs while addressing their current drawbacks, such as unpredictable reactivity and poor surface stability, is presented. To harness the advantages of LMs, their integration is extensively discussed with polymeric materials through various grafting strategies, leading to the development of macromolecular composites with exceptional softness, solubility, surface functionalization, and versatility. Furthermore, the applications of LMs within LM‐elastomer composites, particularly focusing on their relevance in specific fields such as flexible electronics, are investigated. Finally, LMs' future prospects are emphasized by highlighting their compatibility with self‐healing polymers, thereby providing pathways for major breakthroughs of LMs based devices.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3