Se‐Rich Functionalized FeSx Hollow Nanospheres for Accelerated and Long‐Lasting Sodium Storage

Author:

Haruna Baffa12,Wang Lina134,Hu Xiang12,Luo Guangfu5,Muhammad Mujtaba Aminu1,Liu Yangjie1,Yu Jiaqi1,Abdel‐Aziz Ahmed12,Bao Hongli12,Wen Zhenhai12ORCID

Affiliation:

1. CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China

2. University of Chinese Academy of Sciences Beijing 100049 China

3. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China

4. Fujian Key Laboratory of Green Extraction and High‐Value Utilization of New Energy Metals Fuzhou University Fuzhou China 350108

5. Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 China

Abstract

AbstractTransition metal sulfides are emerging as promising anode materials for sodium‐ion batteries (SIBs) due to their high theoretical capacity and low cost, their practical application yet face critical issues of sluggish kinetics and poor cycling stability. In this study, a reliable approach is introduced to overcome these challenges by fabrication of Se0.75‐Fe1‐xS0.25@SC hollow nanospheres thanks to the enriched robust Fe─S─C, C─S, and C─Se bonding, which greatly benefit for enhancing both reaction kinetics and structural stability. Kinetic study combining with in situ characterization reveals that the incorporation of rich‐Se into FeSx induces the formation of cationic Fe and Se vacancies, leading to abundant sites and optimized path for sodium storage. Density functional theory calculations also demonstrate how Se‐rich engineering weakens carbonaceous polar C─S─Fe bonds and accelerates reaction dynamics. The as‐prepared Se0.75‐Fe1‐xS0.25@SC can deliver a high reversible capacity of 515 mAh g−1 at 2 A g−1 over 1250 cycles and achieve superior rate capability with maintaining capacity of 418 mAh g−1 at 10 A g−1. This work pioneers the concept of vacancy‐rich functionalized nanostructures, offering a new pathway for designing advanced electrode materials for energy storage devices.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3