Amorphous Cellulose Electrolyte for Long Life and Mechanically Robust Aqueous Structural Batteries

Author:

Lim Gwendolyn J.H.1ORCID,Koh J. Justin2,Chan Kwok Kiong1,Verma Vivek3,Chua Rodney1,Koh Xue Qi2,Kidkhunthod Pinit4,Sutrisnoh Nur Ayu Afira1,Srinivasan Madhavi135ORCID

Affiliation:

1. School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Ave. Singapore 639798 Singapore

2. Institute of Materials Research and Engineering Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Singapore

3. Research Techno Plaza Energy Research Institute at Nanyang Technological University 50 Nanyang Drive Singapore 637553 Singapore

4. Synchrotron Light Research Institute (Public Organization) Muang Nakhon Ratchasima 30000 Thailand

5. Wallenberg Initiative Materials Science for Sustainability WISE Stockholm Sweden

Abstract

AbstractAqueous zinc (Zn)‐based structural batteries capable of both electrochemical energy storage and mechanical load‐bearing capabilities are attractive for next‐generation energy storage for future electric vehicles due to their eco‐friendliness, non‐toxic, and safe nature. However, parasitic free water activities plague aqueous Zn‐based batteries, detrimental to the electrochemical performance and longevity of the cell. Developing polymer gel electrolytes is a notable potential solution, but they usually have poor electrode interfacial interactions and inadequate mechanical properties. This article introduces a novel non‐fibrous highly amorphous cellulose polymer electrolyte “Cellyte” for aqueous structural Zn‐based batteries. Cellyte exhibits a high strength of ≈24 MPa and Young's modulus of ≈380 MPa, along with the ability to suppress parasitic water activity. The symmetric Zn||Cellyte||Zn cell therefore demonstrates excellent cycling stability of over ≈3000 h. Cellyte can also serve as the binder for the structural cathode material, creating a continuous polymer electrolyte–cathode interface, thereby increasing mechanical robustness and decreasing interfacial resistances of the battery, allowing the structural Zn||Cellyte||LMO‐CF battery to achieve high electrochemical performance with excellent cycling stability over 1200 h with ≈91.5% capacity retention. This provides a pathway to design mechanically robust, electrochemically performing, and safe structural batteries.

Funder

Agency for Science, Technology and Research

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3