Affiliation:
1. Department of Materials Science and Engineering Korea University Seoul 02841 South Korea
2. Department of Materials Engineering and Convergence Technology Gyeongsang National University Jinju 52828 South Korea
3. Institute of Green Manufacturing Technology Korea University Seoul 02841 South Korea
Abstract
AbstractThe coalescence of metal nanoparticles in colloidal solutions is a universal and ubiquitous phenomenon. Using this behavior, a simple yet effective route is developed that enables the spontaneous transformation of microsized metals into nanoporous structures in specific electrolyte solvents. The criteria for selecting solvents and counterpart metals suitable for generating nanoporous structures are derived based on the classical theory of acid–base reactions and quantum chemistry based on density functional theory. When employing the developed method for anodes for Na‐ion batteries, the anodes prepared using microsized Sn, Pb, Bi, and CuS particles store 592, 423, 383, and 546 mAh g−1, respectively, at 10 C with cycling lifetimes of 3000−6000 cycles. This study provides fundamental framework for selecting solvents to realize low‐cost anodes with large capacities, long cycling lifetimes, and excellent rate performances. Moreover, the findings can be extended to other functional materials that can exploit their large specific surface areas.
Funder
National Research Foundation of Korea
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献