Unraveling Surface Reconstruction During Oxygen Evolution Reaction on the Defined Spinel Oxide Surface

Author:

Yeom Kyungbeen12,Jo Jinwoung12,Shin Heejong12,Ji Hyunsoo12,Moon Sungjin3,Park Ji Eun4,Lee Seongbeom12,Shim Jaehyuk12,Mok Dong Hyeon3,Bootharaju Megalamane S.12,Back Seoin3,Hyeon Taeghwan12,Sung Yung‐Eun12ORCID

Affiliation:

1. Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea

2. School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea

3. Department of Chemical and Biomolecular EngineeringInstitute of Emergent Materials Sogang University Seoul 04107 Republic of Korea

4. Graduate School of Knowledge‐based Technology and Energy Tech University of Korea Siheung 15703 Republic of Korea

Abstract

AbstractThe reconstructed surface structure of Co‐based spinel oxides serves as the active site for oxygen evolution reaction (OER). However, the structural complexity of spinel oxides and surface dynamics during the OER hinder the understanding of the reconstruction mechanism and electronic structure of the active site. In this study, spinel Co3O4@(CoFeV)3O4 nanocube (CoFeV) is reported, a (001) facet‐defined spinel oxide comprising Co, Fe, and V deposited on the Co3O4 nanocube template to exclude facet‐dependent factors. Introducing highly dissoluble V cations accelerates the reconstruction process to enhance the electrocatalytic activity. CoFeV exhibited enhanced electrocatalytic activity (266 mV at 10 mA cm−2 in 1 M KOH) and durability (maintained stable electrocatalytic activity during a 200 h chronopotentiometry (CP) test at 100 mA cm−2) with significantly enlarged electrochemically active surface area (ECSA). The experimental and theoretical results demonstrated that V dissolution during catalysis induced oxygen vacancies, accelerating the surface reconstruction to highly active oxyhydroxide. Consequently, the anion exchange membrane water electrolyzer (AEMWE) of CoFeV as the anode exhibited a remarkable performance of 6.19 A cm−2 at 2.0 Vcell in 1 M KOH and robust durability for 96 h at a constant current density of 500 mA cm−2.

Funder

Ministry of Trade, Industry and Energy

Institute for Basic Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3