Reagent‐Free Covalent Immobilization of Biomolecules in a Microfluidic Organ‐On‐A‐Chip

Author:

Ashok Deepu12345,Singh Jasneil2346ORCID,Jiang Shouyuan24ORCID,Waterhouse Anna234ORCID,Bilek Marcela1346ORCID

Affiliation:

1. School of Biomedical Engineering Faculty of Engineering The University of Sydney Sydney NSW 2006 Australia

2. School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW 2006 Australia

3. The University of Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia

4. The Charles Perkins Centre The University of Sydney Sydney NSW 2006 Australia

5. Heart Research Institute Newtown NSW 2042 Australia

6. School of Physics Faculty of Science The University of Sydney Sydney NSW 2006 Australia

Abstract

AbstractMicrofluidic systems have become integral for lab‐on‐a‐chip and organ‐on‐a‐chip applications across numerous disciplines. These systems, typically fabricated using polydimethylsiloxane (PDMS) chips on glass substrates, lack the bioactivity required for such applications. To overcome this, biomolecules are immobilized using either oxygen (O2) plasma treatment or chemical reagents like amino silanes. However, O2 plasma treatments are unstable and cannot covalently immobilize biomolecules, while wet‐chemistry approaches are toxic, time‐consuming, and expensive. A novel microfluidic platform that combines two plasma surface treatments: Plasma‐activated coating (PAC) and atmospheric pressure plasma jet (APPJ), to enable reagent‐free covalent immobilization of biomolecules is described here. These surface treatments, unlike O2 plasma, covalently immobilized fibronectin on PDMS and glass, and significantly improved endothelial cell attachment and proliferation. By combining PAC and APPJ, a hybrid microfluidic platform with equivalent bond strength to standard O2 plasma devices, but with significantly enhanced endothelial cell growth in and artery‐on‐a‐chip model, is developed. This platform is also amenable to high‐shear applications such as coronary shear, with endothelial cells aligning with flow, as seen in human arteries. By providing reagent‐free covalent immobilization of biomolecules within a microfluidic system, this technology has the potential to radically improve organ‐on‐a‐chip development as well as lab‐on‐a‐chip systems, point‐of‐care diagnostics, and sensors.

Funder

Australian Research Council

University of Sydney

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3