Affiliation:
1. School of Environment and Energy South China University of Technology Guangzhou 510006 China
Abstract
AbstractThe delicate design of efficient air electrodes is conducive to improving the reaction kinetics and operational durability of protonic ceramic electrochemical cells (PCECs) at intermediate‐low temperatures. Here, a series of high‐order Ruddlesden–Popper (RP) perovskite electrodes are developed via the regulation of Ni/Co ratio and porosity for efficient charge/gas transfer. As verified by structural analysis and electrochemical characterizations, the electrode with a composition of Pr4Ni1.8Co1.2O10‐δ (PNCO64) shows the most matchable thermal expansion behavior with electrolytes, and highest electrical conductivity, and best catalytic activity toward oxygen reduction/evolution reactions. The Ni/Co ratio of 6:4 can induce the formation of an optimized amount of Pr6O11 in PNCO64, which is likely the pivotal source of the improved catalytic activity. When implemented on PCECs, the PNCO64 electrodes with the addition of 5% graphite pore‐former achieve a remarkable peak power density (1.18 W cm−2) and a high current density of 2.08 A cm−2 at 1.3 V at 600 °C. Excellent durability in fuel cell mode (≈85 h) and electrolysis mode (≈92 h) is also accomplished in PCECs at 600 °C.
Funder
National Natural Science Foundation of China
Basic and Applied Basic Research Foundation of Guangdong Province
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献