3D Printed Silk Fibroin‐Based Hydrogels with Tunable Adhesion and Stretchability for Wearable Sensing

Author:

Wu Kunlin1,Li Junwei1,Li Yue2,Wang Hailu1,Zhang Yingchao2,Guo Binbin3,Yu Jing2,Wang Yifan1ORCID

Affiliation:

1. School of Mechanical and Aerospace Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore

2. School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore

3. Shenzhen Key Laboratory for Additive Manufacturing of High‐performance Materials Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen 518055 China

Abstract

AbstractHydrogel‐based wearable strain sensors have recently gained considerable interest due to their promising applications in real‐time health monitoring and motion detection. However, achieving integrated high‐stretchability, self‐adhesiveness, and long‐term water‐retaining property simultaneously in hydrogel systems remains a big challenge, which limits their applications in wearable electronics. Herein, a multifunctional hydrogel material designed is proposed for wearable strain sensors that can be manufactured by digital light processing (DLP) 3D printing technology. By tailoring the composition of chemically cross‐linked networks (ploy(acrylamide)/poly(acrylic acid)/poly(ethylene glycol) diacrylate), physically cross‐linked networks (ploy(acrylamide)/poly(acrylic acid)/poly(ethylene glycol) diacrylate/silk fibroin/glycerol/water) and microstructures on the surface, the 3D printed hydrogel exhibits promising superior and adjustable mechanical properties, tunable adhesion and good water‐retaining property simultaneously. In addition, through adding conductive ions, high ionic conductivity can also be achieved for stretchable sensing applications. Based on these integrated multifunctionalities, the 3D printed hydrogel is suitable for wearable strain sensors to detect various body motions. This work provides a prospect for 3D printable hydrogel systems with broad applications in wearable electronics.

Funder

Nanyang Technological University

Agency for Science, Technology and Research

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3