Synergistic Engineering of Top Gate Stack for Low Hysteresis 2D MoS2 Transistors

Author:

Sheng Chuming1,Wang Xinyu1,Dong Xiangqi1,Hu Yan1,Zhu Yuxuan1,Wang Die1,Gou Saifei1,Sun Qicheng1,Zhang Zhejia1,Zhang Jinshu1,Ao Mingrui1,Chen Haojie1,Tian Yuchen1,Shang Jieya1,Song Yufei1,He Xinliu1,Xu Zihan2,Li Lin3,Zhou Peng14,Bao Wenzhong14ORCID

Affiliation:

1. State Key Laboratory of Integrated Chips and Systems School of Microelectronics Fudan University Shanghai 200433 China

2. Shenzhen Six Carbon Technology Shenzhen 518055 China

3. Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education School of Physics and Electronic Engineering Harbin Normal University Harbin 150025 China

4. Shaoxin Laboratory Shaoxing 312000 China

Abstract

Abstract2D semiconductors have emerged as candidates for next‐generation electronics. However, previously reported 2D transistors which typically employ the gate‐first process to fabricate a back‐gate (BG) configuration while neglecting the thorough impact on the dielectric capping layer, are severely constrained in large‐scale manufacturing and compatibility with complementary metal–oxide–semiconductor (CMOS) technology. In this study, dual‐gate (DG) field‐effect transistors have been realized based on wafer‐scale monolayer MoS2 and the gate‐last processing, which avoids the transfer process and utilizes an optimized top‐gate (TG) dielectric stack, rendering it highly compatible with CMOS technology. Subsequently, the physical mechanism of TG dielectric deposition and the corresponding controllable threshold voltage (VTH) shift is investigated. Then the fabricated TG‐devices with a large on/off ratio up to 1.7 × 109, negligible hysteresis (≈14 mV), and favorable stability. Additionally, encapsulated TG structured photodetectors have been demonstrated which exhibit photo responsivity (R) up to 9.39 × 103 A W−1 and detectivity (D*) ≈2.13 × 1013 Jones. The result paves the way for future CMOS‐compatible integration of 2D semiconductors for complex multifunctional IC applications.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3