Uniting Ultrahigh Plasticity with Near‐Theoretical Strength in Submicron‐Scale Si via Surface Healing

Author:

Xu Wei1,Yu Jinhua2,Ding Jun2,Guo Yunna3,Deng Lei3,Zhang Liqiang3,Wan Xiaoxuan1,Zheng Shaochuan1,Wang Yuecun1ORCID,Shan Zhiwei1

Affiliation:

1. Center for Advancing Materials Performance from the Nanoscale (CAMP‐Nano) & Hysitron Applied Research Center in China (HARCC) State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China

2. Center for Alloy Innovation and Design (CAID) State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China

3. Clean Nano Energy Center State Key Laboratory of Metastable Materials Science and Technology Yanshan University Qinhuangdao 066004 China

Abstract

AbstractAs a typical hard but brittle material, Si tends to fracture abruptly at a stress well below its theoretical strength, even if the tested volume goes down to submicron scale, at which materials are usually nearly free of flaws or extended defects. Here, via the thermal–oxidation–mediated healing of the surface that is the preferred site for cracks or dislocations initiation, the premature fracture can be effectively inhibited and the over 50% homogeneous plastic strain with the near‐theoretical strength (twice the value of the unhealed counterpart) are united in submicron‐sized Si particles. In situ transmission electron microscope observations and atomistic simulations elucidate the confinement effect from the passivated and smoothened thermal oxide, which retards the dislocation nucleation and transforms the dominant deformation mechanism from partial dislocation to the more mobile full dislocation. This work demonstrates an effective and feasible surface engineering pathway to optimize the mechanical properties of Si at small scales.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3