Synergistic Active Phases of Transition Metal Oxide Heterostructures for Highly Efficient Ammonia Electrosynthesis

Author:

Yin Di1,Chen Dong1,Zhang Yuxuan1,Wang Weijun1,Quan Quan1,Wang Wei12,Meng You12,Lai Zhengxun1,Yang Zhe3,Yip SenPo4,Wong Chun‐Yuen3,Bu Xiuming5,Wang Xianying5,Ho Johnny C.124ORCID

Affiliation:

1. Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 P. R. China

2. State Key Laboratory of Terahertz and Millimeter Waves City University of Hong Kong Kowloon Hong Kong SAR 999077 P. R. China

3. Department of Chemistry City University of Hong Kong Kowloon Hong Kong SAR 999077 P. R. China

4. Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 816‐8580 Japan

5. Energy Materials Research Center AG Hydrogen Materials & Devices CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China

Abstract

AbstractElectrochemically converting waste nitrate (NO3) into ammonia (NH3) is a green route for both wastewater treatment and high‐value‐added ammonia generation. However, the NO3‐to‐NH3 reaction involves multistep electron transfer and complex intermediates, making it a grand challenge to drive efficient NO3 electroreduction with high NH3 selectivity. Herein, an in‐operando electrochemically synthesized Cu2O/NiO heterostructure electrocatalyst is proven for efficient NH3 electrosynthesis. In situ Raman spectroscopy reveals that the obtained Cu2O/NiO, induced by the electrochemistry‐driven phase conversion, is the real active phase. This electronically coupled phase can modulate the interfacial charge distribution, dramatically lower the overpotential in the rate‐determining step and thus requiring lower energy input to proceed with the NH3 electrosynthesis. The orbital hybridization calculations further identify that Cu2O is beneficial for NO3 adsorption, and NiO could promote the desorption of NH3, forming an excellent tandem electrocatalyst. Such a tandem system leads to NH3 Faradaic efficiency of 95.6%, a super‐high NH3 selectivity of 88.5% at −0.2 V versus RHE, surpassing most of the NH3 electrosynthesis catalysts at an ultralow reaction voltage.

Funder

City University of Hong Kong

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3