Hierarchically Macro–Microporous Covalent Organic Frameworks for Efficient Proton Conduction

Author:

Zou Wenwu1,Jiang Guoxing1,Zhang Weifeng1,Zhang Longhai1,Cui Zhiming1,Song Huiyu1,Liang Zhenxing1,Du Li1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China

Abstract

AbstractAssembling molecular proton carriers into crosslinked networks is widely used to fabricate proton conductors, but they often suffer losses in conduction efficiency and stability accompanied by unclear causes. Covalent organic frameworks (COFs), with well‐defined crystal frameworks and excellent stability, offer a platform for exploring the proton transfer process. Herein, a strategy to construct proton conductors that induce conductivity and stability by introducing bottom‐up hierarchical structure, mass transport interfaces, and host–guest interactions into the COFs is proposed. The proton‐transport platforms are designed to possess hierarchically macro–microporous structure for proton storage and mass transport. The protic ionic liquids, with low proton dissociation energies investigated by DFT calculation, are installed at open channel walls for faster proton motion. As expected, the resultant proton conductors based on a covalent organic framework (PIL0.5@m‐TpPa‐SO3H) with hierarchical pores increase conductivity by approximately three orders of magnitude, achieving the value of 1.02 × 10−1 S cm−1 (90 °C, 100% RH), and maintain excellent stability. In addition, molecular dynamics simulations reveal the mechanism of “hydrogen‐bond network” for proton conduction. This work offers a fresh perspective on COF‐based material manufacturing for high‐performance proton conductors via a protocol of macro‐micropores.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

South China University of Technology

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3