Affiliation:
1. Laboratory of Stimuli‐responsive Functional Materials and Devices (SFD) Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
2. Processing and Performance of Materials group Department of Mechanical Engineering Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
3. Soft Matter Rheology and Technology Department of Chemical Engineering KU Leuven P.O. Box 2424 3001 Heverlee Belgium
4. Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
Abstract
AbstractUntethered soft fiber actuators are advancing toward next‐generation artificial muscles, with rotating polymer fibers allowing controlled rotational deformations and contractions accompanied by torque and longitudinal forces. Current approaches, however, are based either on non‐recyclable and non‐reprogrammable thermosets, exhibit rotational deformations and torques with inadequate actuation performance, or involve intricate multistep processing and photopolymerization impeding scalable fabrication and manufacturing of millimeter‐thick fibers. Here, the melt‐extrusion and drawing of a 50 m long thermoplastic liquid crystal elastomer fiber with a ≈1.3 mm diameter on a large scale is reported. With the responsive thermoplastic material, rotating actuators are fabricated via easily exploited programming freedom resulting in large, reversible rotational deformations and torques. The actuation performance of the twisted fibers may be controlled by the programmed twisting density without complicated preparation steps or photocuring being required. The thermoplastic behavior enables fabrication of plied fibers, demonstrated as a triple helical twisted rope constructed from individual rotating fibers delivering up to three times as great rotational and longitudinal forces capable of reversibly opening and lifting a screw cap vial. Besides the programmability, the thermoplastic material employed lends itself to be completely reprocessed into other configurations with self‐healing properties in contrast to thermosets.
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献