Bandgap Engineering of Two‐Step Processed Perovskite Top Cells for Perovskite‐Based Tandem Photovoltaics

Author:

Pappenberger Ronja12ORCID,Diercks Alexander2,Petry Julian12,Moghadamzadeh Somayeh12,Fassl Paul12,Paetzold Ulrich W.12ORCID

Affiliation:

1. Institute of Microstructure Technology (IMT) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany

2. Light Technology Institute (LTI) Karlsruhe Institute of Technology (KIT) Engesserstrasse 13 76131 Karlsruhe Germany

Abstract

AbstractFor high‐performance application of perovskite solar cells (PSCs) in monolithic perovskite/silicon tandem configuration, an optimal bandgap and process method of the perovskite top cell is required. While the two‐step method leads to regular perovskite film crystallization, engineering wider bandgaps (Eg > 1.65 eV) for the solution‐based two‐step method remains a challenge. This work introduces an effective and facile strategy to increase the bandgap of two‐step solution‐processed perovskite films by incorporating bromide in both deposition steps, the inorganic precursor deposition (step 1, PbBr2) and the organic precursor deposition (step 2, FABr). This strategy yields improved charge carrier extraction and quasi‐Fermi level splitting with power conversion efficiencies (PCEs) of up to 15.9%. Further improvements are achieved by introducing CsI in the bulk and utilizing LiF as surface passivation, resulting in a stable power output exceeding 18.5% for Eg = 1.68 eV. This additional performance boost arises from enhanced perovskite film crystallization, leading to improved charge carrier extraction. Laboratory scale monolithic perovskite/silicon solar cells (TSCs) (1 cm2 active area) achieve PCEs up to 23.7%. This work marks a significant advancement for wide bandgap two‐step solution‐processed perovskite films, enabling their effective use in high‐performance and reproducible PSCs and perovskite/silicon TSCs.

Funder

Helmholtz Association

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3