Affiliation:
1. School of Biomedical Engineering Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230026 P. R. China
2. Center for Intelligent Medical Equipment and Devices Suzhou Institute for Advanced Research University of Science and Technology of China Suzhou Jiangsu 215123 P. R. China
3. Department of Precision Machinery and Instrumentation School of Engineering Science University of Science and Technology of China Hefei Anhui 230027 P. R. China
Abstract
AbstractTissue vascularization plays a critical role in the regeneration and repair of damaged tissues. However, in certain instances of tissue injury, the pace and effectiveness of vascularization can be limited. Innovative strategies leveraging magnetic fields and magnetic nanoparticles (MNPs) are devised to enhance the efficacy of tissue vascularization. This review explores the potential of magnetic field‐assisted strategies in augmenting tissue vascularization and repair. Direct application of static or dynamic magnetic fields, alone or in combination with MNPs, offers a means to modulate cellular behaviors and gene expression, thereby promoting angiogenesis and tissue regeneration. Techniques such as cell labeling, gene delivery using MNPs, and magnetic targeting have shown promise in efficiently repairing various ischemic tissue injuries by enhancing tissue vascularization. These strategies have broad applications in bone and skin tissue regeneration, limb ischemia treatment, myocardial injury treatment, and diabetic wound therapy. By summarizing recent advancements in magnetically controlled strategies, this review aims to shed light on their future prospects in tissue regeneration and clinical treatment.
Funder
National Key Research and Development Program of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献