Affiliation:
1. School of Pharmaceutical Sciences (Shenzhen) Shenzhen Campus of Sun Yat‐sen University Shenzhen 518107 China
2. Tianjin Key Laboratory of Biomedical Materials Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy Institute of Biomedical Engineering Chinese Academy of Medical Sciences Peking Union Medical College Tianjin 300192 China
3. Xiangya School of Pharmaceutical Sciences Central South University Changsha 410013 China
Abstract
AbstractThe therapeutic application of STING agonists in various malignancies has been limited by factors such as the inability of systemic administration and the immunosuppressive tumor microenvironment. Herein, this work reports a mesoporous polydopamine‐based multifunctional nanoplatform loaded with STING agonist MSA‐2 and chelated with Mn2+ for synergistic photothermal and STING activation‐based immunotherapy. The nanoplatform effectively delivers MSA‐2 to the tumor site and intelligently releases its contents through acid degradation, facilitated by the photothermal effect. Additionally, the thermal ablation of tumor tissue can induce immunogenic cell death, which helps alleviate the immunosuppressive tumor microenvironment, thereby enhancing the efficacy of MSA‐2. Furthermore, Mn2+ works as a dual‐acting STING sensitizer and MRI contrast agent which not only boosts the immune response but also allows real‐time MRI tracking of the nanoplatform. This strategy is proved highly efficacious both in impeding primary/metastatic tumor and in eliciting a robust tumor‐specific immune response. Collectively, an effective multifunctional nanoplatform for the systemic delivery of STING agonist which synergized photothermal therapy and STING pathway activation‐mediated immunotherapy is highlighted here to provide new ideas and strategies for optimizing combination therapy for cancer treatment.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献