Understanding Interfaces in AlScN/GaN Heterostructures

Author:

Streicher Isabel1ORCID,Leone Stefano1ORCID,Zhang Meiling2,Tlemcani Taoufik Slimani2,Bah Micka2ORCID,Straňák Patrik1,Kirste Lutz1,Prescher Mario1,Yassine Ali3,Alquier Daniel2,Ambacher Oliver3

Affiliation:

1. Fraunhofer Institute for Applied Solid State Physics IAF Tullastrasse 72 79108 Freiburg Germany

2. GREMAN UMR 7347, CNRS, Université de Tours INSA Centre Val de Loire 16 rue Pierre et Marie Curie 37071 Tours France

3. Gips‐Schüle Chair for Power Electronics Institute for Sustainable Systems Engineering (INATECH) University of Freiburg Emmy‐Noether‐Strasse 2 79110 Freiburg Germany

Abstract

AbstractAluminum scandium nitride barrier layers increase the available sheet charge carrier density in gallium nitride‐based high‐electron‐mobility transistors and boost the output power of high‐frequency amplifiers and high voltage switches. Growth of AlScN by metal‐organic chemical vapor deposition is challenging due to the low vapor pressure of the conventional Sc precursor Cp3Sc, which induces low growth rates of AlScN and leads to thermally‐induced AlScN/GaN‐interface degradation. In this work, novel Sc precursors are employed to reduce the thermal budget by increasing the growth rate of the AlScN layer. The AlScN/GaN interfaces are investigated by high‐resolution X‐ray diffraction, high‐resolution transmission electron microscopy, time‐of‐flight secondary ion mass spectrometry, capacitance–voltage, current–voltage and temperature‐dependent Hall measurements. Linearly graded interlayers with strain‐induced stacking faults, edge, and screw dislocations form at the AlScN/GaN interface at growth rates of 0.015 nms−1. Growth rates of 0.034 nms−1 and higher allow for abrupt interfaces, but a compositional grading in the barrier remains. Homogeneous barrier layers can be achieved at growth rates of 0.067 nms−1 or by growing an AlN interlayer. The electrical properties of the heterostructures are sensitive to Sc accumulations at the cap/barrier interface, residual impurities from precursor synthesis, and surface roughness. This study paves the way for high‐performing devices.

Funder

Bundesministerium für Bildung und Forschung

Electronic Components and Systems for European Leadership

Publisher

Wiley

Reference77 articles.

1. R.Quay P.Bruckner A.Tessmann E.Ture D.Schwantuschke M.Dammann P.Waltereit in2017 Integrated Nonlinear Microwave and Millimetre‐wave Circuits Workshop (INMMiC).IEEE Piscataway NJ2017 pp.1–3.

2. E.Ture S.Leone P.Bruckner R.Quay O.Ambacher 2019 IEEE MTT‐S International Microwave Symposium (IMS) IEEE Piscataway NJ2019.

3. M.Cwiklinski P.Bruckner S.Leone C.Friesicke R.Lozar H.Massler R.Quay O.Ambacher 2019 IEEE MTT‐S International Microwave Symposium (IMS) IEEE Piscataway NJ2019.

4. M.Cwiklinski P.Bruckner S.Leone S.Krause C.Friesicke H.Massler R.Quay O.Ambacher in2020 IEEE/MTT‐S International Microwave Symposium (IMS) IEEE Piscataway NJ2020 pp.1117–1120.

5. GaN-based power devices: Physics, reliability, and perspectives

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3