Machine Learning for Perovskite Solar Cells and Component Materials: Key Technologies and Prospects

Author:

Liu Yiming1ORCID,Tan Xinyu12,Liang Jie1,Han Hongwei3,Xiang Peng1,Yan Wensheng14

Affiliation:

1. College of Electrical Engineering & New Energy Hubei Provincial Collaborative Innovation Center for New Energy Microgrid China Three Gorges University Yichang 443002 China

2. College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Tree Gorges University Yichang 443002 China

3. Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China

4. Institute of Carbon Neutrality and New Energy School of Electronics and Information Hangzhou Dianzi University Hangzhou 310018 China

Abstract

AbstractData‐driven epoch, the development of machine learning (ML) in materials and device design is an irreversible trend. Its ability and efficiency to handle nonlinear and game‐playing problems is unmatched by traditional simulation computing software and trial‐error experiments. Perovskite solar cells are complex physicochemical devices (systems) that consist of perovskite materials, transport layer materials, and electrodes. Predicting the physicochemical properties and screening the component materials related to perovskite solar cells is the strong point of ML. However, the applications of ML in perovskite solar cells and component materials has only begun to boom in the last two years, so it is necessary to provide a review of the involved ML technologies, the application status, the facing urgent challenges and the development blueprint.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3