Catalyst Droplet‐Based Puncturable Nanostructures with Mechano‐Bactericidal Properties Against Bioaerosols

Author:

Lee Inae12ORCID,Kim Jieun3,Kwak Rhokyun3ORCID,Lee Joonseok12ORCID

Affiliation:

1. Department of Chemistry Hanyang University Seoul 04763 Republic of Korea

2. Research Institute for Convergence of Basic Sciences Hanyang University Seoul 04763 Republic of Korea

3. Department of Mechanical Convergence Engineering Hanyang University Seoul 04763 Republic of Korea

Abstract

AbstractBioaerosol contamination problems have led to the need for new technologies that effectively collect and inactivate airborne microorganisms. Typical nanomaterial‐based filter membranes are usually sterilized using photocatalysts, electrical stimulation, and thermal treatment, which are expensive and require additional devices and cumbersome manufacturing. In this study, a membrane with nanotopographical features is manufactured via a catalyst droplet‐based procedure to mechanically damage airborne bacteria. The catalyst droplets are used as templates for in situ novel puncturable nanopillar growth on the membrane surface. Numerical simulations and microscopic observations show that puncturable nanopillars with a thin and rough nano‐edge are advantageous for rupturing the bacterial cell compared to flat nanopillars without a thin edge. A puncturable nanostructured air filter (PNAF) is compared to a bare air filter and exhibits higher bioaerosol collection efficiencies (>98% and 89.3–95.7%, respectively). PNAF is tested under breathing conditions as part of a face mask, where it effectively captures and deactivates E. coli aerosols through a mechano‐bactericidal effect, resulting in the inhibition of bacterial proliferation and finally death. Thus, PNAF can be applied as an air purifier or face mask filter for bioaerosol collection presenting antibacterial effects without external stimulation.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3