Growth Mechanism of Thermally Evaporated γ‐CsPbI3 Film

Author:

Dong Chong1,Liu Dayu1,Wang Liang1,Li Kanghua1,Yang Xuke1,Li Zhe2,Song Haisheng13,Xu Ling1,Chen Chao13ORCID,Tang Jiang13

Affiliation:

1. Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan Hubei 430074 China

2. School of Engineering and Materials Science Queen Mary University of London London E1 4NS UK

3. Optics Valley Laboratory Hubei 430074 China

Abstract

AbstractCesium lead triiodide (CsPbI3) inorganic perovskite possesses excellent thermal stability and matched bandgap for silicon‐based tandem photovoltaics. The solution method with high‐temperature annealing process for CsPbI3 film preparation creates challenges to scalable application and conformal growth on the textured silicon. Although additives can decrease the annealing temperature, it will introduce undesired organic components and increase material cost. Thermal co‐evaporation for CsPbI3 has intrinsic advantages to overcome these issues, but the vague growth mechanism impedes the photovoltaic device development. In this study, γ‐CsPbI3 films are directly obtained through co‐evaporation at 50 °C without any additives or high‐temperature post‐annealing. Focusing on the molecular thermodynamic calculations, it is proposed that the unique kinetic energy of evaporated molecules and the in‐situ substrate thermal energy synergistically provide the energy prerequisite for γ‐CsPbI3 formation. Furthermore, the γ phase stabilization is clarified by the crystal grain size effect with regard to the Gibbs free energy difference between the γ and δ phases, which is adjusted through substrate temperature and evaporation rate. The obtained p‐i‐n device realizes an efficiency of 12.75%, which is the highest value for the thermally evaporated γ‐CsPbI3 photovoltaics at low temperature without additives. This study deepens the understanding of thermal evaporation process, benefiting to high‐performance CsPbI3‐textured silicon tandem photovoltaics.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3