Functional Materials for Memristor‐Based Reservoir Computing: Dynamics and Applications

Author:

Zhang Guohua12ORCID,Qin Jingrun1,Zhang Yue3,Gong Guodong4,Xiong Zi‐Yu1,Ma Xiangyu1,Lv Ziyu1,Zhou Ye2,Han Su‐Ting1ORCID

Affiliation:

1. College of Electronics and Information Engineering Shenzhen University Shenzhen 518060 P. R. China

2. Institute for Advanced Study Shenzhen University Shenzhen 518060 P. R. China

3. State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun 130012 P. R. China

4. Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China

Abstract

AbstractThe booming development of artificial intelligence (AI) requires faster physical processing units as well as more efficient algorithms. Recently, reservoir computing (RC) has emerged as an alternative brain‐inspired framework for fast learning with low training cost, since only the weights associated with the output layers should be trained. Physical RC becomes one of the leading paradigms for computation using high‐dimensional, nonlinear, dynamic substrates. Among them, memristor appears to be a simple, adaptable, and efficient framework for constructing physical RC since they exhibit nonlinear features and memory behavior, while memristor‐implemented artificial neural networks display increasing popularity towards neuromorphic computing. In this review, the memristor‐implemented RC systems from the following aspects: architectures, materials, and applications are summarized. It starts with an introduction to the RC structures that can be simulated with memristor blocks. Specific interest then focuses on the dynamic memory behaviors of memristors based on various material systems, optimizing the understanding of the relationship between the relaxation behaviors and materials, which provides guidance and references for building RC systems coped with on‐demand application scenarios. Furthermore, recent advances in the application of memristor‐based physical RC systems are surveyed. In the end, the further prospects of memristor‐implemented RC system in a material view are envisaged.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3