Robust Epoxy Resins with Autonomous Visualization of Damaging‐Healing and Green Closed‐Loop Recycling

Author:

Jiao Xuewei1,Ma Yaning1,Zhao Zihan1,Gao Liang2,Zhang Baoyan2,Yang Jigang1,Li Min‐Hui3,Hu Jun1ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology North Third Ring Road 15 Chaoyang Beijing 100029 China

2. Department of Resin & Prepreg AVIC Manufacturing Technology Institute Composite Technology Center Shijun Road 1, Shunyi District Beijing 101300 China

3. Chimie ParisTech PSL University CNRS Institut de Recherche de Chimie Paris 11 rue Pierre et Marie Curie Paris 75005 France

Abstract

AbstractEpoxy resins‐based engineering plastics are indispensable in the global economy, but they have created a serious waste crisis caused by their chemical cross‐linked networks. To solve this problem, current strategies often require the assistance of catalysts or solvents at the expense of thermal and mechanical performance. In this work, a high‐performance epoxy resin featuring dynamic ester and disulfide bonds (TDS) is reported, which exhibits higher thermal and mechanical properties than common engineering plastics, i.e., tensile strength and modulus of 66.6 MPa and 2.63 GPa, flexural strength and modulus of 103.2 MPa and 3.52 GPa, and glass transition temperature (Tg) of 133 °C. Moreover, the reversible transformation between aromatic disulfide bonds and thiyl radicals endows TDS epoxy resin with autonomous visualization of damage and healing. In addition, the harmonious interplay between disulfide and ester bonds‐promoted by tertiary amine accelerated the topological network rearrangements, enabling TDS to easily reshape and weld. Specifically, TDS can be completely degraded in pure water at 200 °C without any catalyst, and the degraded products can be directly re‐polymerized to achieve green closed‐loop recycling. This work proposes a simple and economical strategy for the development of epoxy resin‐based cutting‐edge engineering plastics that are both functional and sustainable.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3