Maternal Vitamin A deficiency during pregnancy and lactation induced damaged intestinal structure and intestinal flora homeostasis in offspring mice

Author:

Zhou Junming1ORCID,Sun Bo1,Li Minli1,Xu Haoyu1,Feng Ying1,Wu Xiaowei1,Guo Meixia1,Wang Xiaomin2

Affiliation:

1. Department of Cadre Gastroenterology, Jinling Hospital Medical School of Nanjing University Nanjing China

2. Fifth Station Outpatient Department of Jinling Hospital Medical School of Nanjing University Nanjing China

Abstract

AbstractThe small intestine serves as the first channel of dietary Vitamin A (VA) and the unique organ of VA absorption and metabolism. However, there have not been extensive investigations on the exact mechanisms within VA‐related changes in intestinal metabolic disorders. This research is designed to analyze whether and how VA affects intestinal metabolic phenotypes. Male C57BL/6 mice after weaning were randomly fed a VA control diet (VAC) or a VA‐deficient diet (VAD) during the entire pregnancy and lactation process. After a total of 11 weeks, cohorts of VA deprived were next fed to a VA control diet (VAD‐C) for another 8 weeks. The concentration of retinol was measured by a high‐performance liquid chromatography system. The 16S gene sequencing was used to evaluate the intestinal microbiota changes. Through the use of histological staining, western blots, quantitative PCR, and enzyme‐linked immunosorbent assays, the intestinal morphology, inflammatory factors, and intestinal permeability were all evaluated. Following the decrease of the tissue VA levels, VAD mice show a decrease in tissue VA levels, community differences, and the richness and diversity of intestinal microbiota. VAD diet‐driven changes occur in intestinal microbiota, accompanied by a higher mRNA expression of intestinal inflammatory cytokines and an increase in intestinal permeability. As dietary VA is reintroduced into VAD diet‐fed mice, the tissue VA levels, inflammatory response, and intestinal homeostasis profiles are all restored, which are similar to those found after the occurrence of VA‐controlled changes within intestinal microbiota. VA deficiency caused the imbalance of intestinal metabolic phenotypes through a mechanism involving changes in intestinal microbiota. It is thought that intestinal microbiota metabolic influences represent a new salient and additional mechanism, which can be used as a new method to achieve the onset and treatment of the effect of VAD on intestinal homeostasis impairment.

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3