Sex‐specific dendritic morphology of hippocampal pyramidal neurons in the adolescent and young adult rats

Author:

Yarmohammadi‐Samani Parisa1,Vatanparast Jafar1ORCID

Affiliation:

1. Department of Biology, School of Science Shiraz University Shiraz Iran

Abstract

AbstractCA1 and CA3 pyramidal neurons are the major sources of hippocampal efferents. The structural features of these neurons are presumed to be involved in various normal/abnormal cognitive and emotional outcomes by influencing the pattern of synaptic inputs and neuronal signal processing. Although many studies have described hippocampal structure differences between males and females, these reports mainly focused on gross anatomical features in adult or aged models, and such distinctions on neuronal morphology and dendritic spine density during adolescence, a period of high vulnerability to neurodevelopmental disorders, have received much less attention. In this work, we analyzed dendritic architecture and density of spines in CA1 and CA3 neurons of male and female rats in early adolescence (postnatal day, PND 40) and compared them with those in late adolescence/young adulthood (PND 60). On PND 40, CA1 neurons of male rats showed more Sholl intersections and spine density in apical and basal dendrites compared to those in females. The Sholl intersections in basal dendrites of CA3 neurons were also more in males, whereas the number of apical dendrite intersections was not significantly different between sexes. In male rats, there was a notable decrease in the number of branch and terminal points in the basal dendrite of CA1 neurons of young adults when compared to their sex‐matched adolescent rats. On the other hand, CA1 neurons in young adult females also showed more Sholl intersections in apical and basal dendrites compared to adolescent females. Meanwhile, the total cable length, the number of branches, and terminal points of apical dendrites in CA3 neurons also exhibited a significant reduction in young adult male rats compared to their sex‐matched adolescents. In young adult rats, both apical and basal dendrites of CA3 neurons in males showed fewer intersections with Sholl circles, but there were no significant differences in dendritic spine density or count estimation between males and females. On the other hand, young adult female rats had more Sholl intersections and dendritic spine count on the basal dendrites of CA3 neurons compared to adolescent females. Although no significant sex‐ and age‐dependent difference in neuronal density was detected in CA1 and CA3 subareas, CA3 pyramidal neurons of both male and female rats showed reduced soma area compared to adolescent rats. Our findings show that the sex differences in the dendritic structure of CA1 and CA3 neurons vary by age and also by the compartments of dendritic arbors. Such variations in the morphology of hippocampal pyramidal neurons may take part as a basis for normal cognitive and affective differences between the sexes, as well as distinct sensitivity to interfering factors and the prevalence of neuropsychological diseases.

Funder

Iran National Science Foundation

Publisher

Wiley

Subject

Developmental Biology,Developmental Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3