Affiliation:
1. Departamento de Matemática Aplicada Escuela Técnica Superior de Ingeniería de Montes Forestal y del Medio Natural Universidad Politécnica de Madrid Madrid Spain
2. Instituto de Ciencias Matemáticas (ICMAT) Consejo Superior de Investigaciones Científicas Madrid Spain
3. Escuela Superior de Ingeniería y Tecnología Universidad Internacional de La Rioja Logroño Spain
Abstract
AbstractIn contact Hamiltonian systems, the so‐called dissipated quantities are akin to conserved quantities in classical Hamiltonian systems. In this article, a Noether's theorem for non‐autonomous contact Hamiltonian systems is proved, characterizing a class of symmetries which are in bijection with dissipated quantities. Other classes of symmetries which preserve (up to a conformal factor) additional structures, such as the contact form or the Hamiltonian function, are also studied. Furthermore, making use of the geometric structures of the extended tangent bundle, additional classes of symmetries for time‐dependent contact Lagrangian systems are introduced. The results are illustrated with several examples. In particular, the two‐body problem with time‐dependent friction is presented, which could be interesting in celestial mechanics.
Funder
Ministerio de Ciencia, Innovación y Universidades
Ministerio de Ciencia e Innovación
Subject
General Physics and Astronomy
Reference61 articles.
1. Contact Hamiltonian Dynamics: The Concept and Its Use
2. Contact Hamiltonian mechanics
3. M.deLeón M.Lainz Revista de la Real Academia de Ciencias Canaria 2019 pp.1–46.
4. M.Lainz Contact Hamiltonian Systems.2022.
5. Contact Hamiltonian systems
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献