Affiliation:
1. FIBRAMEC Piracicaba Brazil
2. Laboratory of Nuclear Instrumentation (LIN), Center for Nuclear Energy in Agriculture University of São Paulo Piracicaba Brazil
3. College of Agriculture Luiz de Queiroz University of São Paulo Piracicaba Brazil
4. Laboratory of Analytical Chemistry (LAC), Center for Nuclear Energy in Agriculture University of São Paulo Piracicaba Brazil
5. Protection Technical Section (RPTS), Center for Nuclear Energy in Agriculture University of São Paulo Piracicaba Brazil
Abstract
AbstractThe growing efficiency of agribusiness depends on the development of technology. A key challenge regards the determination of plant mineral content, which help farmers to make a decision about fertilizer use. Currently, such nutritional status diagnoses are made based on wet chemical methods; they are usually slow and generate chemical wastess. In this context, an in‐house manufactured XRF benchtop for agri‐samples is proposed in this study. This XRF system was furnished with a manual primary filter changer, vacuum chamber, dual interlock radiological protection system, which were installed in the equipment cover, and light signals. Analytical capabilities were also evaluated. The equipment presented spurious peaks of Ti, Fe, Ni, and Zn, which is not ideal for some agronomical applications; this issue might be overcome in the future by means of additional primary filters. The total x‐ray spectrum counting rate is roughly one magnitude order lower than two other commercial XRF systems, but the signal‐to‐noise ratio is quite similar. The vacuum chamber under partial vacuum improves the Al, Si, P and S signals from 1.5 to 2.2. The limits of detection (LOD, mg kg−1) for P (261), S (168), K (68), and Ca (50) macronutrients and Mn (14), Fe (15), Cu (9), and Zn (8) micronutrients are close to the ones reported in the literature. The limits of detection for P, S, K, and Ca are suitable for plant analysis.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献