Air‐stable Li3.12P0.94Bi0.06S3.91I0.18 solid‐state electrolyte with high ionic conductivity and lithium anode compatibility toward high‐performance all‐solid‐state lithium metal batteries

Author:

Jin Daokuan12,Shi Haodong2,Ma Yuxin23,Liu Yangyang2,Wang Yang14,Dong Yanfeng5ORCID,Wu Mingbo14,Wu Zhong‐Shuai26ORCID

Affiliation:

1. State Key Laboratory of Heavy Oil Processing Institute of New Energy College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao China

2. State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China

3. University of Chinese Academy of Sciences Beijing China

4. College of New Energy China University of Petroleum (East China) Qingdao China

5. Department of Chemistry College of Sciences Northeastern University Shenyang China

6. Dalian National Laboratory for Clean Energy Chinese Academy of Sciences Dalian China

Abstract

AbstractSulfide solid‐state electrolytes (SSEs) with superior ionic conductivity and processability are highly promising candidates for constructing all‐solid‐state lithium metal batteries (ASSLMBs). However, their practical applications are limited by their intrinsic air instability and serious interfacial incompatibility. Herein, a novel glass‐ceramic electrolyte Li3.12P0.94Bi0.06S3.91I0.18 was synthesized by co‐doping Li3PS4 with Bi and I for high‐performance ASSLMBs. Owing to the strong Bi‒S bonds that are thermodynamically stable to water, increased unit cell volume and Li+ concentration caused by P5+ substitution with Bi3+, and the in situ formed robust solid electrolyte interphase layer LiI at lithium surface, the as‐prepared Li3.12P0.94Bi0.06S3.91I0.18 SSE achieved excellent air stability with a H2S concentration of only 0.205 cm3 g−1 (after 300 min of air exposure), outperforming Li3PS4 (0.632 cm3 g−1) and the most reported sulfide SSEs, together with high ionic conductivity of 4.05 mS cm−1. Furthermore, the Li3.12P0.94Bi0.06S3.91I0.18 effectively improved lithium metal stability. With this SSE, an ultralong cyclability of 700 h at 0.1 mA cm−2 was realized in a lithium symmetrical cell. Moreover, the Li3.12P0.94Bi0.06S3.91I0.18‐based ASSLMBs with LiNi0.8Mn0.1Co0.1O2 cathode achieved ultrastable capacity retention rate of 95.8% after 300 cycles at 0.1 C. This work provides reliable strategy for designing advanced sulfide SSEs for commercial applications in ASSLMBs.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Major Scientific and Technological Innovation Project of Shandong Province

Natural Science Foundation of Shandong Province

Fundamental Research Funds for the Central Universities

Dalian Institute of Chemical Physics, Chinese Academy of Sciences

Dalian National Laboratory for Clean Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3