Hepatic and portal vein segmentation with dual‐stream deep neural network

Author:

Xu Jichen1,Jiang Wei2,Wu Jiayi1,Zhang Wei345,Zhu Zhenyu6,Xin Jingmin1,Zheng Nanning1,Wang Bo347

Affiliation:

1. National Key Laboratory of Human‐Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University Xi'an China

2. Research Center of Artificial Intelligence of Shangluo Shangluo University Shangluo China

3. Beijing Jingzhen Medical Technology Ltd. Beijing China

4. Xi'an Zhizhenzhineng Technology Ltd. Xi'an China

5. School of Telecommunications Engineering Xidian University Xi'an China

6. Hepatobiliary Surgery Center The Fifth Medical Center of PLA General Hospital Beijing China

7. Huazhong University of Science and Technology the Institute of Medical Equipment Science and Engineering Wuhan China

Abstract

AbstractBackgroundLiver lesions mainly occur inside the liver parenchyma, which are difficult to locate and have complicated relationships with essential vessels. Thus, preoperative planning is crucial for the resection of liver lesions. Accurate segmentation of the hepatic and portal veins (PVs) on computed tomography (CT) images is of great importance for preoperative planning. However, manually labeling the mask of vessels is laborious and time‐consuming, and the labeling results of different clinicians are prone to inconsistencies. Hence, developing an automatic segmentation algorithm for hepatic and PVs on CT images has attracted the attention of researchers. Unfortunately, existing deep learning based automatic segmentation methods are prone to misclassifying peripheral vessels into wrong categories.PurposeThis study aims to provide a fully automatic and robust semantic segmentation algorithm for hepatic and PVs, guiding subsequent preoperative planning. In addition, to address the deficiency of the public dataset for hepatic and PV segmentation, we revise the annotations of the Medical Segmentation Decathlon (MSD) hepatic vessel segmentation dataset and add the masks of the hepatic veins (HVs) and PVs.MethodsWe proposed a structure with a dual‐stream encoder combining convolution and Transformer block, named Dual‐stream Hepatic Portal Vein segmentation Network, to extract local features and long‐distance spatial information, thereby extracting anatomical information of hepatic and portal vein, avoiding misdivisions of adjacent peripheral vessels. Besides, a multi‐scale feature fusion block based on dilated convolution is proposed to extract multi‐scale features on expanded perception fields for local features, and a multi‐level fusing attention module is introduced for efficient context information extraction. Paired t‐test is conducted to evaluate the significant difference in dice between the proposed methods and the comparing methods.ResultsTwo datasets are constructed from the original MSD dataset. For each dataset, 50 cases are randomly selected for model evaluation in the scheme of 5‐fold cross‐validation. The results show that our method outperforms the state‐of‐the‐art Convolutional Neural Network‐based and transformer‐based methods. Specifically, for the first dataset, our model reaches 0.815, 0.830, and 0.807 at overall dice, precision, and sensitivity. The dice of the hepatic and PVs are 0.835 and 0.796, which also exceed the numeric result of the comparing methods. Almost all the p‐values of paired t‐tests on the proposed approach and comparing approaches are smaller than 0.05. On the second dataset, the proposed algorithm achieves 0.749, 0.762, 0.726, 0.835, and 0.796 for overall dice, precision, sensitivity, dice for HV, and dice for PV, among which the first four numeric results exceed comparing methods.ConclusionsThe proposed method is effective in solving the problem of misclassifying interlaced peripheral veins for the HV and PV segmentation task and outperforming the comparing methods on the relabeled dataset.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence techniques in liver cancer;Frontiers in Oncology;2024-09-03

2. Conserving Freshwater Ecosystems in India: A call to action;Aquatic Conservation: Marine and Freshwater Ecosystems;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3