Proximal policy optimization‐based controller for chaotic systems

Author:

Yau Her‐Terng12,Kuo Ping‐Huan12,Luan Po‐Chien2,Tseng Yung‐Ruen2

Affiliation:

1. Department of Mechanical Engineering National Chung Cheng University Chiayi Taiwan

2. Advanced Institute of Manufacturing with High‐tech Innovations (AIM‐HI) National Chung Cheng University Chiayi Taiwan

Abstract

AbstractDeep reinforcement learning (DRL) algorithms are suitable for modeling and controlling complex systems. Methods for controlling chaos, a difficult task, require improvement. In this article, we present a DRL‐based control method that can control a nonlinear chaotic system without any prior knowledge of the system's equations. We use proximal policy optimization (PPO) to train an agent. The environment is a Lorenz chaotic system, and our goal is to stabilize this chaotic system as quickly as possible and minimize the error by adding extra control terms to the chaotic system. Therefore, the reward function accounts for the total triaxial error. The experimental results demonstrated that the trained agent can rapidly suppress chaos in the system, regardless of the system's random initial conditions. A comprehensive comparison of different DRL algorithms indicated that PPO is the most efficient and effective algorithm for controlling the chaotic system. Moreover, different maximum control forces were applied to determine the relationship between the control forces and controller performance. To verify the robustness of the controller, random disturbances were introduced during training and testing, and the empirical results indicated that the agent trained with random noise performed better. The chaotic system has highly nonlinear characteristics and is extremely sensitive to initial conditions, and DRL is suitable for modeling such systems.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3